skip to main content


Search for: All records

Creators/Authors contains: "Hempson, Gareth P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Herbivores and fire are important consumers of plant biomass that influence vegetation structure, nutrient cycling, and biodiversity globally. Departures from historic biomass consumption patterns due to wild herbivore losses, livestock proliferation, and altered fire regimes can have critical ecological consequences. We set out to (i) understand how consumer dominance and prevalence responded to spatial and temporal moisture gradients in Holocene North America and (ii) examine how past and present consumer dominance patterns in North America compare to less altered consumer regimes of modern Sub-Saharan Africa. We developed long-term records of bison abundance and biomass burning in Holocene midcontinent North America and compared these records to reconstructions of moisture availability and vegetation structure. We used these reconstructions to characterize bison and fire prevalence across associated moisture and vegetation gradients. We found that bison herbivory dominated biomass consumption in dry settings whereas fire dominated in wetter environments. Historical distributions of herbivory and burning in midcontinent North America resemble those of contemporary Sub-Saharan Africa, suggesting disturbance feedbacks and interactions regulate long-term consumer dynamics. Comparisons of consumer dynamics in contemporary North America with Holocene North America and Sub-Saharan Africa also reveal that fire is functionally absent from regions where it was once common, with profound ecological implications.

     
    more » « less
  2. Abstract

    Seasonal diet shifts and migration are key components of large herbivore population dynamics, but we lack a systematic understanding of how these behaviours are distributed on a macroecological scale.

    The prevalence of seasonal strategies is likely related to herbivore body size and feeding guild, and may also be influenced by properties of the environment, such as soil nutrient availability and climate seasonality.

    We evaluated the distribution of seasonal dietary shifts and migration across large‐bodied mammalian herbivores and determined how these behaviours related to diet, body size and environment.

    We found that herbivore strategies were consistently correlated with their traits: seasonal diet shifts were most prevalent among mixed feeding herbivores and migration among grazers and larger herbivores. Seasonality also played a role, particularly for migration, which was more common at higher latitudes. Both dietary shifts and migration were more widespread among extratropical herbivores, which also exhibited more intermediate diets and body sizes.

    Our findings suggest that strong seasonality in extratropical systems imposes pressure on herbivores, necessitating widespread behavioural responses to navigate seasonal resource bottlenecks. It follows that tropical and extratropical herbivores may have divergent responses to global change, with intensifying herbivore pressure in extratropical systems contrasting with diminishing herbivore pressure in tropical systems.

     
    more » « less
  3. Abstract

    Herbivory is a key process structuring vegetation in savannas, especially in Africa where large mammal herbivore communities remain intact. Exclusion experiments consistently show that herbivores impact savanna vegetation, but effect size variation has resisted explanation, limiting our understanding of the past, present and future roles of herbivory in savanna ecosystems.

    Synthesis of vegetation responses to herbivore exclusion shows that herbivory decreased grass abundance by 57.0% and tree abundance by 30.6% across African savannas.

    The magnitude of herbivore exclusion effects scaled with herbivore abundance: more grazing herbivores resulted in larger grass responses and more browsing herbivores in larger tree responses. However, existing experiments are concentrated in semi‐arid savannas (400–800‐mm rainfall) and soils data are mostly lacking, which makes disentangling environmental constraints a challenge and priority for future research.

    Observed herbivore impacts were ~2.1× larger than existing estimates modelled based on consumption. Wildlife metabolic rates may be higher than are usually used for estimating consumption, which offers one clear avenue for reconciling estimated herbivore consumption with observed herbivore impacts. Plant‐soil feedbacks, plant community composition, and the phenological or demographic timing of herbivory may also influence vegetation productivity, thereby magnifying herbivore impacts.

    Because herbivore abundance so closely predicts vegetation impact, changes in herbivore abundance through time are likely predictive of the past and future of their impacts. Grazer diversity in Africa has declined from its peak 1 million years ago and wild grazer abundance has declined historically, suggesting that grazing likely had larger impacts in the past than it does today.

    Current wildlife impacts are dominated by small‐bodied mixed feeders, which will likely continue into the future, but the magnitude of top‐down control may also depend on changing climate, fire and atmospheric CO2.

    Synthesis. Herbivore biomass determines the magnitude of their impacts on savanna vegetation, with effect sizes based on direct observation that outstrip existing modelled estimates across African savannas. Findings suggest substantial ecosystem impacts of herbivory and allow us to generate evidence‐based hypotheses of the past and future impacts of herbivores on savanna vegetation.

     
    more » « less